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Quantum computing for Hamiltonian
simulation problems
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How to simulate the unitary evolution
governed by a system Hamiltonian?
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Hamiltonian as “linear combination” of Pauli operators

𝜎𝑖 is basic 2x2 Pauli matrix:
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Approx. error

Product formula for approximate simulation with circuits

Each Pauli exponential can be

directedly synthesized by basic

1Q and 2Q gates



Basic synth. of Pauli exponentials (IRs)
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• Pauli exponential as IR (intermediate representation) 𝑃𝑗 = ℎ𝑗𝜎0
(𝑗)

⊗⋯⊗𝜎𝑛−1
(𝑗)

• IR synthesis→ basic 1Q and 2Q gates



Problem statement for IRs synth. & Opt.

• Compilation goal: As less basic quantum gates (especially 2Q gates) as possible

• Previous optimization methods

• Gate cancellation opportunities through 1) variational IR arrangement, 2) IR synth. variants

• E.g., [TKet, Cowtan+2020], [PauliOpt, Griend+2023], [Paulihedral, Li+ASPLOS’22], [Tetris, Jin+ISCA’24]
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E.g.,

Naïve synth.

==

E.g., Synth. Strategy in Paulihedral/Tetris Local optimization (limited opt. space & complicated tricks)

Dependent on CNOT tree unrolling



Is there any efficient synthesis approach?
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Insight of our optimization method

Simultaneous Pauli strings simplification via Clifford conjugations

…

𝐶𝜎𝑖,𝜎𝑗 means some Clifford2Q operator

𝐻𝑍 ≔ 𝐼,𝐻𝑋 ≔ 𝐻,𝐻𝑌 ≔ 𝑆 𝐻 𝑆†
Global opt.:
Simult. Paulis simp.

Highly effective
(e.g., 8+3 = 11 CNOTs v.s.

30 CNOTs via naïve synth)

ISA independent

E.g.,



Problem formulation

• Clifford formalism
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One Pauli string → another Pauli string
A set of Pauli string → another set of Pauli strings

• Formal IR description: Binary symplectic form (BSF)
• 𝑗-th component of 𝑖-th Pauli→ [𝑋𝑖,𝑗; 𝑍𝑖,𝑗] (e.g., 𝑋 is [1,0], 𝑌 is [1,1])

• Accommodate Global High-level info.

Reformulate the synthesis process: Pauli exp. synthesis→ Clifford transformation on Paulis

= =
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Problem formulation

• Clifford formalism as binary operation on column vectors of BSF tableau
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• Optimization goal:

• When 𝑤tot. ≔ ∨𝑖 𝑟𝑥
𝑖 ∨ 𝑟𝑧

𝑖
is at most 2 (directly

synthesized by basic 1Q/2Q gates)

• Now the key is: How to search for the most appropriate

Clifford2Q for BSF simplification?

Reformulate the synthesis process: Pauli exp. synthesis→ Clifford transformation on Paulis

E.g., CNOT transformation E.g., Clifford 𝐶 𝑋, 𝑌 : 𝑥𝑎, 𝑥𝑏 | 𝑧𝑎, 𝑧𝑏 → 𝑥𝑎 ⊕𝑥𝑏 ⊕𝑧𝑏, 𝑧𝑎 ⊕𝑧𝑏 𝑧𝑎, 𝑧𝑎 ⊕𝑧𝑏

E.g., 𝑤tot. = 2

= =



BSF simplification algorithm

• A cost function: disparity between current BSF and optimization goal
• A sophisticated metric heuristically designed. See paper for details.

• Heuristic Clifford2Q search: Greedily search for the most appropriate one

• Select from 𝐶𝜎𝑖,𝜎𝑗 × {(𝑞𝑚 , 𝑞𝑛)} that mostly minimize the cost function

• Apply the selected Clifford2Q; Peel 1Q Pauli rotations before each search step

• Iterate, until 𝑤tot. is less than 2
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Final resultE.g., Targe unitary evolution (snippet from H4 UCCSD):

𝑒−𝑖(0.1∗𝑋𝑋𝑋𝑍𝑌𝑍+0.2∗𝑌𝑋𝑋𝑍𝑌𝑌+0.3∗𝑍𝑋𝑋𝑍𝑌𝑍)



• In PHOENIX (Pauli-based High-level Optimization ENgine for Instruction eXecution),
we design
• BSF as formal description (preserve high-level global info of IRs)

• Formulate IR synth. & opt. as “simultaneously lowering weights” of BSF
tableau by Clifford2Q (global opt.; ISA-independent)

• BSF simplification algorithm as the core optimization pass (highly effective;
polynomial complexity)

• Extra opt. points: Assemble simplified IR groups, gate cancellation, lowering
depth

• See paper for details
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Moreover



Evaluation: Main results

• Hardware-agnostic compilation benchmarking

• Baselines: [Tket, Cowtan+2020], [Paulihedral,

Li+ASPLOS’22), [Tetris, Jin+ISCA’24]

• Phoenix significantly outperforms other SOTAs

• Phoenix’s high-level optimization leaves the

least optimization space for local optimization
(Qiskit O3)

11Benchmarks: 16 molecule simulation programs

https://arxiv.org/abs/1906.01734
https://arxiv.org/abs/1906.01734
https://arxiv.org/abs/1906.01734
https://arxiv.org/abs/2109.03371
https://arxiv.org/abs/2109.03371
https://arxiv.org/abs/2109.03371
https://arxiv.org/abs/2309.01905
https://arxiv.org/abs/2309.01905


Conclusion

• Contributions: PHOENIX, a high-level VQA application-specific compiler

• Formal description by BSF; Problem modeling via BSF tableau update by Cliford2Q;

Heuristic algorithms

• ISA-independent (CNOT/B/SQiSW; Clifford2Q could even be iSWAP-equivalent other

than CZ-equivalent ones)

• High-level & global optimization (Highly effective; scalable)

• Outperforms other SOTAs across diverse VQA applications, device topologies, and

backend ISAs (more evaluation details in paper)

• Future directions

• Deep co-optimization (e.g., topology-aware opt.)?

• BSF as formal description leveraged for stabilizer circuit optimization?
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Zhaohui Yang
PhD student
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Paper link

Thanks for listening!



Backup slides



End-to-end workflow and further opt.
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Pauli IR

grouping

IR group

simplification

IR groups

ordering

…… ……

Assemble (order) simplified IRs subcircuits to exploit other

opportunities, e.g., gate cancellation



Evaluation: For topology-limited devices

• On the heavy-hex topology (IBM’s Manhattan), Phoenix significantly

outperforms other SOTAs

• 36.17% (22.62%) #2Q and 43.85% (28.12%) Depth2Q reduction v.s. Paulihedral (Tetris)

• Qubit routing overhead (#2Qbefore-mapping/#2Qafter-mapping)

• Paulihedral (3.4x) > Phoenix (2.8x) > Tetris (1.9x)
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Evaluation: For alternative ISAs

• More and more continuous ISAs (gate sets) are adopted (e.g., IBM’s fractional

gates, IonQ’s partial entangling gates)

• Again, Phoenix significantly outperforms other SOTAs in SU(4) ISA (arXiv:2312.05652)

• The advantage of Phoenix in SU(4) ISA is more impressive than that in CNOT ISA

• We show that without deep co-optimization (e.g., CNOT unrolling, SWAP-based

routing), the Phoenix optimization framework proves generic advantage!
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Comparison for diverse ISAs with all-to-all and limited topologies

CNOT ISA is not unique in quantum computing! Three-CNOT SWAP-based routing is not unique as well!

https://arxiv.org/abs/2312.05652


Alternative choices of Clifford group
generators
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• Optimization effects based on iSWAP-equivalent Cliffords or CNOT-iSWAP-mixed

Cliffords are comparable to our previous choice of “universal controlled gate” CNOT-

equivalent Cliffords

• This provides hardware-friendly property for hardware with non-CNOT native gate sets



Evaluation: UCCSD benchmarks info
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Evaluation: QAOA benchmarking
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Evaluation: Algorithmic error analysis
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• Algorithmic error (disparity between circuit and ideal evolution)

• E.g., infid = 1 −
1

𝑁
|Tr(𝑈†𝑉)|
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