
PHOENIX: Pauli-Based High-Level
Optimization Engine for Instruction

Execution on NISQ Devices
Zhaohui Yang1, Dawei Ding2, Chenghong Zhu3, Jianxin Chen4, Yuen Xie1

1Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong
2Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

3The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
4Department of Computer Science and Technology, Tsinghua University, Beijing, China

Quantum computing for Hamiltonian
simulation problems

2

How to simulate the unitary evolution
governed by a system Hamiltonian?

3

𝑡/𝜏

𝐻 =෍

𝑗=1

𝐿

ℎ𝑗𝑃𝑗 =෍

𝑗=1

𝐿

ℎ𝑗𝜎0
(𝑗)

⊗⋯⊗𝜎𝑛−1
(𝑗)

Hamiltonian as “linear combination” of Pauli operators

𝜎𝑖 is basic 2x2 Pauli matrix:

I=
1 0
0 1

,X=
0 1
1 0

, Y=
0 −𝑖
i 0

, or Z=
1 0
0 −1

+ 𝑂(𝑡 𝜏)

Approx. error

Product formula for approximate simulation with circuits

Each Pauli exponential can be

directedly synthesized by basic

1Q and 2Q gates

Basic synth. of Pauli exponentials (IRs)

4

• Pauli exponential as IR (intermediate representation) 𝑃𝑗 = ℎ𝑗𝜎0
(𝑗)

⊗⋯⊗𝜎𝑛−1
(𝑗)

• IR synthesis→ basic 1Q and 2Q gates

Problem statement for IRs synth. & Opt.

• Compilation goal: As less basic quantum gates (especially 2Q gates) as possible

• Previous optimization methods

• Gate cancellation opportunities through 1) variational IR arrangement, 2) IR synth. variants

• E.g., [TKet, Cowtan+2020], [PauliOpt, Griend+2023], [Paulihedral, Li+ASPLOS’22], [Tetris, Jin+ISCA’24]

5

E.g.,

Naïve synth.

==

E.g., Synth. Strategy in Paulihedral/Tetris Local optimization (limited opt. space & complicated tricks)

Dependent on CNOT tree unrolling

Is there any efficient synthesis approach?

6

Insight of our optimization method

Simultaneous Pauli strings simplification via Clifford conjugations

…

𝐶𝜎𝑖,𝜎𝑗 means some Clifford2Q operator

𝐻𝑍 ≔ 𝐼,𝐻𝑋 ≔ 𝐻,𝐻𝑌 ≔ 𝑆 𝐻 𝑆†
Global opt.:
Simult. Paulis simp.

Highly effective
(e.g., 8+3 = 11 CNOTs v.s.

30 CNOTs via naïve synth)

ISA independent

E.g.,

Problem formulation

• Clifford formalism

7

One Pauli string → another Pauli string
A set of Pauli string → another set of Pauli strings

• Formal IR description: Binary symplectic form (BSF)
• 𝑗-th component of 𝑖-th Pauli→ [𝑋𝑖,𝑗; 𝑍𝑖,𝑗] (e.g., 𝑋 is [1,0], 𝑌 is [1,1])

• Accommodate Global High-level info.

Reformulate the synthesis process: Pauli exp. synthesis→ Clifford transformation on Paulis

= =

ZYY

ZZY
XYY
XZY

𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3

𝑋-part mat. 𝑍-part mat.

𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3

𝑋-part mat. 𝑍-part mat.

ZYI

ZZI
XYI
XZI

Problem formulation

• Clifford formalism as binary operation on column vectors of BSF tableau

8

• Optimization goal:

• When 𝑤tot. ≔ ∨𝑖 𝑟𝑥
𝑖 ∨ 𝑟𝑧

𝑖
is at most 2 (directly

synthesized by basic 1Q/2Q gates)

• Now the key is: How to search for the most appropriate

Clifford2Q for BSF simplification?

Reformulate the synthesis process: Pauli exp. synthesis→ Clifford transformation on Paulis

E.g., CNOT transformation E.g., Clifford 𝐶 𝑋, 𝑌 : 𝑥𝑎, 𝑥𝑏 | 𝑧𝑎, 𝑧𝑏 → 𝑥𝑎 ⊕𝑥𝑏 ⊕𝑧𝑏, 𝑧𝑎 ⊕𝑧𝑏 𝑧𝑎, 𝑧𝑎 ⊕𝑧𝑏

E.g., 𝑤tot. = 2

= =

BSF simplification algorithm

• A cost function: disparity between current BSF and optimization goal
• A sophisticated metric heuristically designed. See paper for details.

• Heuristic Clifford2Q search: Greedily search for the most appropriate one

• Select from 𝐶𝜎𝑖,𝜎𝑗 × {(𝑞𝑚 , 𝑞𝑛)} that mostly minimize the cost function

• Apply the selected Clifford2Q; Peel 1Q Pauli rotations before each search step

• Iterate, until 𝑤tot. is less than 2

9

Final resultE.g., Targe unitary evolution (snippet from H4 UCCSD):

𝑒−𝑖(0.1∗𝑋𝑋𝑋𝑍𝑌𝑍+0.2∗𝑌𝑋𝑋𝑍𝑌𝑌+0.3∗𝑍𝑋𝑋𝑍𝑌𝑍)

• In PHOENIX (Pauli-based High-level Optimization ENgine for Instruction eXecution),
we design
• BSF as formal description (preserve high-level global info of IRs)

• Formulate IR synth. & opt. as “simultaneously lowering weights” of BSF
tableau by Clifford2Q (global opt.; ISA-independent)

• BSF simplification algorithm as the core optimization pass (highly effective;
polynomial complexity)

• Extra opt. points: Assemble simplified IR groups, gate cancellation, lowering
depth

• See paper for details

10

Moreover

Evaluation: Main results

• Hardware-agnostic compilation benchmarking

• Baselines: [Tket, Cowtan+2020], [Paulihedral,

Li+ASPLOS’22), [Tetris, Jin+ISCA’24]

• Phoenix significantly outperforms other SOTAs

• Phoenix’s high-level optimization leaves the

least optimization space for local optimization
(Qiskit O3)

11Benchmarks: 16 molecule simulation programs

https://arxiv.org/abs/1906.01734
https://arxiv.org/abs/1906.01734
https://arxiv.org/abs/1906.01734
https://arxiv.org/abs/2109.03371
https://arxiv.org/abs/2109.03371
https://arxiv.org/abs/2109.03371
https://arxiv.org/abs/2309.01905
https://arxiv.org/abs/2309.01905

Conclusion

• Contributions: PHOENIX, a high-level VQA application-specific compiler

• Formal description by BSF; Problem modeling via BSF tableau update by Cliford2Q;

Heuristic algorithms

• ISA-independent (CNOT/B/SQiSW; Clifford2Q could even be iSWAP-equivalent other

than CZ-equivalent ones)

• High-level & global optimization (Highly effective; scalable)

• Outperforms other SOTAs across diverse VQA applications, device topologies, and

backend ISAs (more evaluation details in paper)

• Future directions

• Deep co-optimization (e.g., topology-aware opt.)?

• BSF as formal description leveraged for stabilizer circuit optimization?

12

Zhaohui Yang
PhD student

13

Paper link

Thanks for listening!

Backup slides

End-to-end workflow and further opt.

15

Pauli IR

grouping

IR group

simplification

IR groups

ordering

…… ……

Assemble (order) simplified IRs subcircuits to exploit other

opportunities, e.g., gate cancellation

Evaluation: For topology-limited devices

• On the heavy-hex topology (IBM’s Manhattan), Phoenix significantly

outperforms other SOTAs

• 36.17% (22.62%) #2Q and 43.85% (28.12%) Depth2Q reduction v.s. Paulihedral (Tetris)

• Qubit routing overhead (#2Qbefore-mapping/#2Qafter-mapping)

• Paulihedral (3.4x) > Phoenix (2.8x) > Tetris (1.9x)

16

Evaluation: For alternative ISAs

• More and more continuous ISAs (gate sets) are adopted (e.g., IBM’s fractional

gates, IonQ’s partial entangling gates)

• Again, Phoenix significantly outperforms other SOTAs in SU(4) ISA (arXiv:2312.05652)

• The advantage of Phoenix in SU(4) ISA is more impressive than that in CNOT ISA

• We show that without deep co-optimization (e.g., CNOT unrolling, SWAP-based

routing), the Phoenix optimization framework proves generic advantage!

17

Comparison for diverse ISAs with all-to-all and limited topologies

CNOT ISA is not unique in quantum computing! Three-CNOT SWAP-based routing is not unique as well!

https://arxiv.org/abs/2312.05652

Alternative choices of Clifford group
generators

18

• Optimization effects based on iSWAP-equivalent Cliffords or CNOT-iSWAP-mixed

Cliffords are comparable to our previous choice of “universal controlled gate” CNOT-

equivalent Cliffords

• This provides hardware-friendly property for hardware with non-CNOT native gate sets

Evaluation: UCCSD benchmarks info

19

Evaluation: QAOA benchmarking

20

Evaluation: Algorithmic error analysis

21

• Algorithmic error (disparity between circuit and ideal evolution)

• E.g., infid = 1 −
1

𝑁
|Tr(𝑈†𝑉)|

	Slide 1: PHOENIX: Pauli-Based High-Level Optimization Engine for Instruction Execution on NISQ Devices
	Slide 2: Quantum computing for Hamiltonian simulation problems
	Slide 3: How to simulate the unitary evolution governed by a system Hamiltonian?
	Slide 4: Basic synth. of Pauli exponentials (IRs)
	Slide 5: Problem statement for IRs synth. & Opt.
	Slide 6: Is there any efficient synthesis approach?
	Slide 7: Problem formulation
	Slide 8: Problem formulation
	Slide 9: BSF simplification algorithm
	Slide 10: Moreover
	Slide 11: Evaluation: Main results
	Slide 12: Conclusion
	Slide 13: Zhaohui Yang
	Slide 14: Backup slides
	Slide 15: End-to-end workflow and further opt.
	Slide 16: Evaluation: For topology-limited devices
	Slide 17: Evaluation: For alternative ISAs
	Slide 18: Alternative choices of Clifford group generators
	Slide 19: Evaluation: UCCSD benchmarks info
	Slide 20: Evaluation: QAOA benchmarking
	Slide 21: Evaluation: Algorithmic error analysis

